CIOAdvisor Apac

  • Home
  • Vendors
  • News
  • Conference
  • Whitepapers
  • Newsletter
  • Subscribe
  • About Us
  • Specials

  • Menu
      • Ad Management
      • Application Security Testing
      • Artificial Intelligence
      • BPO
      • Contact Center
      • Data Analytics
      • Deep Learning
      • Digital Marketing
      • Digital Transformation
      • Disaster Recovery Services
      • Disinfection and Sanitization
      • E-Invoicing
      • Ecommerce
      • Govt Tech
      • HubSpot
      • Human Resource
      • ICT
      • IoT
      • Laser and Photonics
      • Leadership Development
      • Logistics
      • Machine Learning
      • Marketing Technology
      • Mobile Application
      • Parking Management
      • Payment And Card
      • SDN
      • Telecom
  • Digital Transformation
  • Logistics
  • IoT
  • Payment And Card
  • Artificial Intelligence
Specials
  • Specials

  • Ad Management
  • Application Security Testing
  • Artificial Intelligence
  • BPO
  • Contact Center
  • Data Analytics
  • Deep Learning
  • Digital Marketing
  • Digital Transformation
  • Disaster Recovery Services
  • Disinfection and Sanitization
  • E-Invoicing
  • Ecommerce
  • Govt Tech
  • HubSpot
  • Human Resource
  • ICT
  • IoT
  • Laser and Photonics
  • Leadership Development
  • Logistics
  • Machine Learning
  • Marketing Technology
  • Mobile Application
  • Parking Management
  • Payment And Card
  • SDN
  • Telecom
×
#

CIO Advisor APAC Weekly Brief

Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from CIO Advisor APAC

Subscribe

loading
  • Home
  • News
Editor's Pick (1 - 4 of 8)
left
Turning Big Data into Big Money

Shawn Paskevic, CIO, NEBCO

The Inherent necessity of Big Data as a defining strategic factor

Esteban Remecz, CIO Asia Pacific, ZF Group

Get Ready for an IT Renaissance: Brought to You by Big Data Analytics

Clark Golestani, EVP and CIO, Merck

Promise of Data Analytics

John Kochavatr, CIO & Digital Leader, GE Water & Process Technologies

Data Analytics: New Edge for Success

Colin Boyd, VP & CIO, Joy Global [NYSE:JOY]

How big data analytics guided our decision-making through a year like no other

Michael Coatsworth, Principal Architect, Foodstuffs North Island

Advanced Analytics in Tokopedia

Krishna Dermawan, Head of Data Analyst, Tokopedia

The Pursuit of a Culture That Is Driven By Data

Mike Congdon, Head of Business Insights, OfficeMax New Zealand

right

THANK YOU FOR SUBSCRIBING

Effective Data Science Team Building Essentials for Tech Start-Ups

CIOAdvisor Apac | Monday, October 28, 2019
Tweet

Effective data science programs are challenging to deliver. Organizations fail at the pilot stage despite providing a promising solution. A successful data science program requires four key components such as skills, technology, data, and direction. Start-ups need experienced staff with junior hires to tip the balance perfectly. It is essential for a start-up to maintain long-term vision while working on short-term needs. Therefore, it is crucial to ensure that the talent the company hires is also aligned with the strategy of the company.

Diverse Skill Sets

A team must have members with a variety of skill sets. Data scientists must be proficient in data analytics and machine learning. Additionally, good data scientists also require strong communication skills. Data scientists with these skill sets are rare, and the company must ensure that they aren’t used in the wrong role.  Data engineers are as vital as data scientists because they ensure that the technology runs when needed. These engineers require excellent development skills and data knowledge as they source data and produce solutions.

Data architects are needed to put an adequate infrastructure in place and make timely decisions. This is a demanding role because data architects need to understand a company’s solution. Another invaluable team member is a business analyst. A competent business analyst must have a technical background as they must fully get the functionality of the data science techniques. 

Balancing the Team

The team must have a perfect balance of skills and experience. The company must hire freshers with the ability to think through problems. Technical skills are easily taught whereas logic and abstract thinking is more challenging to teach. Candidates with data science degrees may not be all effective because they might know about the technology the company is using, but they might not know how to apply it in a real-world scenario. The best candidates can come from Astrophysics background which requires the skill to look at a problem and describe it in a series of logical statements.

Guidance

Once the right skill set is found, the company must set up an environment that is established on trust and security because good data science requires access to high volumes of real data. Later, the company must invest in training courses as the skills the team learns will be beneficial for the company for many years. The company must focus on building their own training courses to teach specialized skills to the group. Mentoring can also provide direction and motivation to the staff members.

Structure

The structure of the team varies on the size and the setup of the company — the centralized approach where scientists work at the same location results in a collaborative and cohesive effort so that ideas can be shared and the problems can be addressed as a unit. When the company expands and grows too big to maintain at a single location, the company must ensure that managers, scientists, and stakeholders can all interact when needed.

Check this out: Top Healthcare Startups

tag

Startups

Featured Vendors

  • MVI Technologies: Innovative, Future-proof Financial and Payment Switching
    MVI Technologies: Innovative, Future-proof Financial and Payment Switching
  • DATAMARK: Process Driven Solutions in Action
    DATAMARK: Process Driven Solutions in Action
  • IMACREA: Shaping the Future of Teleworking
    IMACREA: Shaping the Future of Teleworking
  • PuzzleBox BPO, Inc.: A Hybrid Platform for Customer Support and Sales Empowerment
    PuzzleBox BPO, Inc.: A Hybrid Platform for Customer Support and Sales Empowerment
ON THE DECK

Read Also

Safeguarding Quality through Proactive Risk Management

Cultivating a Culture of Agility: Nurturing Adaptability for Organizational Success

Governance for Smarter KPIs: Enhancing Performance Measurement

Embracing the Irreplaceable Human in Business and Beyond

Leveraging Gamification for Deeper Financial Engagement

Generative AI: The Game-Changer Automates Marketing For The Retail Industry

Loading...

I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info

Copyright © 2026 CIO Advisorapac. All rights reserved. Registration on or use of this site constitutes acceptance of our Terms of Use and Privacy Policy |  Sitemap

follow on linkedinfollow on twitter
This content is copyright protected

However, if you would like to share the information in this article, you may use the link below:

https://www.cioadvisorapac.com/news/effective-data-science-team-building-essentials-for-tech-startups-nwid-1213.html